A geometrical version of the higher order Hamilton formalism in fibred manifolds

IVAN KOLÁR
Institute of Mathematics of the ČSAV

BRNO-CZECHOSLOVKIA

Abstract

It has been clarified recently that an r-th order Lagrangian on a fibred manifold $Y \rightarrow X$ does not determine a unique Poincaré-Cartan form provided $\operatorname{dim} X>1$ and $r>2$, [1], [4], [6], [9], [10]. To make this fact more transparent, we introduced a new operation generalizing the formal exterior differentiation, [6]. In the present paper we deduce in such a way that a unique Poincaré-Cartan form can be determined by means of a simple additional structure - a linear symmetric connection Γ on the base manifold X (or, more generally, by a convenient splitting S). Then we present a suitable geometric definition of a regular r-th order Lagrangian on Y and we prove that any our Poincaré-Cartan form can be used in a geometrical version of the higher order Hamilton formalism.

The starting point for this paper was a lecture presented in the Banach Center at Warsaw during the 1983 Trimester on Mathematical Physics. The author is grateful to Prof. A.Trautman for his interest in the lecture and his comments.

1. DECOMPOSITION FORMULA

All manifolds and maps are assumed to be infinitely differentiable and all morphisms of fibred manifolds are base-preserving. - Given a fibred manifold $\pi: Y \rightarrow X$, we denote by $\pi_{r}: J^{r} Y \rightarrow X$ its r-th jet prolongation and by $\pi_{r}^{s}: J^{r} Y \rightarrow J^{s} Y, 0 \leqslant s \leqslant r,\left(J^{0} Y=Y\right)$ the jet projections. If $x^{i}, y^{p}, i, j, \ldots=1$,

This article is based on lectures given by the Author during the Trimester on Mathematical Physics at the Stefan Banach International Mathematical Centre, Warsaw, Sept. - Nov. 1983
$\ldots n=\operatorname{dim} X, p, 4-1 \ldots m=\operatorname{dim} Y-\operatorname{dim} X$. are some local fibre coordinates on Y, then the induced coordinates on $J^{r} Y$ are $x^{i},{ }_{3}^{\prime P}$ for all multimdices $|\alpha| \leqslant r$. As usual, $\alpha+\beta$ means the sum of two multiindices, $(\alpha+\beta)_{i}=\alpha_{i}+\beta_{i}$ Any ordinary index i can be interpreted as a multiindex with i-th component 1 and all other components 0 . Since we have to discuss some problems of tensorial character. we shall also use the classical notation of the tensor calculus. In such a situation we write $y_{\alpha}^{p}=y_{j_{1} \ldots j_{k}}^{p}$ for $\alpha=j_{1}+\ldots+j_{k}$. We use the summation convention for ordinary indices, but we always indicate explicitely the summation with respect to multiindices. We set $\omega=\mathrm{d} x^{1} \wedge \ldots \wedge \mathrm{~d} x^{n}, \omega_{i}=\frac{\partial}{\partial x^{i}}-\perp \omega$.

For every morphism $\varphi: J^{r} Y \rightarrow \Lambda^{k} T^{*} X$, one defines its formal exterior differential $D \varphi: J^{r+1} Y \rightarrow \wedge^{k+1} T^{*} X$ by $\left(j^{r+1} s\right)^{*} D \varphi=\mathrm{d}\left(\left(j^{r} s\right)^{*} \varphi\right)$ for every local section s of Y. [13]. If the local coordinate expression of φ is $\varphi=a_{i_{1} \ldots i_{k}}\left(x^{i}, y_{\alpha}^{p}\right) \mathrm{d} x^{i_{1}} \wedge$ $\wedge \mathrm{d} x^{i_{k}}$, then $D_{\varphi}=D_{j} a_{i_{1} \ldots i_{k}} \mathrm{~d} x^{j} \wedge \mathrm{~d} x^{i_{1}} \wedge \ldots \wedge \mathrm{~d} x^{i_{k}}$. where $D_{j} f=\partial_{j} f+$ $\sum_{a}\left(\partial_{p}^{a} f\right) y_{a+j}^{p}, \partial_{j}=\partial / \partial x_{j}, \partial_{p}^{\alpha}=\partial / \partial y_{a}^{p}$, denotes the formal (or total) derivative of a function $f: J^{r} Y \rightarrow \mathbf{R}$. Clearly. $D D \varphi=0$. Any vertical vector field η on γ induces a vector field $J^{r} \eta$ on $J^{r} Y$ such that $\exp \left(t J^{r} \eta\right)=J^{r}(\exp t \eta)$, where $\exp t \xi$ means the flow of a vector field ξ. In coordinates. if $\eta=\eta^{p}\left(x, \ldots \dot{d}_{p}\right.$. then $J^{r} \eta=\sum_{\mid \alpha \leqslant r}\left(D_{a} \eta^{p}\right) \partial_{p}^{\alpha}$. This implies directly: for every morphism $A: J^{r} Y^{r} \rightarrow$ $I^{*} J^{s} Y \otimes \wedge^{k} T^{*} X$ over the identity of $J^{s} Y, s \leqslant r$. there exists a unique morphism $\mathscr{D} A: J^{r+1} Y \rightarrow V^{*} J^{s+1} Y \otimes \bigwedge^{k+1} T^{*} X$ satisfying

$$
\begin{equation*}
\left\langle\mathscr{D} A, J^{s+1} \eta\right\rangle=D\left\langle A, J^{s} \eta\right\rangle \tag{1}
\end{equation*}
$$

for every vertical vector field η on Y. [6]. Obviously, $\mathscr{D} \mathscr{D} A=0$. For $k=n-1$ we write $A=\sum_{|\alpha| \leqslant s} a_{p}^{\alpha i} \mathrm{~d}_{a}^{p} \otimes \omega_{i}$, where αi is a pair of a multiindex and an ordinary index, and we have

$$
\begin{equation*}
\mathscr{D} A=\sum_{i \alpha \mid \leqslant s}\left[\left(D_{i} a_{p}^{\alpha i}\right) \mathrm{d}_{a}^{p}+a_{p}^{\alpha i} \mathrm{~d} y_{a+i}^{p}\right] \otimes \omega \tag{2}
\end{equation*}
$$

We define an r-th order Lagrangian on Y as a morphism $\left.\lambda: J^{r} Y \rightarrow \Lambda^{n} T^{*}.\right\}$. $\lambda=L\left(x^{i}, y_{\alpha}^{p}\right) \omega,[13]$. Its vertical differential $\delta \lambda=\underset{\text { a }}{\Sigma_{r}}\left(\partial_{p}^{\alpha} L\right) d_{\alpha}^{p} \otimes \omega$ can bc interpreted as a map $J^{r} Y \rightarrow V^{*} J^{r} Y \otimes \wedge^{n} T^{*} X$. For the tensorial considerations we introduce

$$
\begin{equation*}
L_{p}^{j_{1} \cdots j_{k}}=\frac{\alpha!}{k!} \partial_{p}^{\alpha} L \quad \text { for } \quad \alpha=j_{1}+\ldots+j_{k} \tag{3}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
\delta \lambda=\left(L_{p} \mathrm{~d} y^{p}+\ldots+L_{p}^{j_{1} \cdots j_{r}} \mathrm{dy}_{j_{1} \cdots j_{r}}^{p}\right) \otimes \omega . \tag{4}
\end{equation*}
$$

We clarified in [6] and [9] that a basic problem is to discuss a decomposition

$$
\begin{equation*}
\delta \lambda=\mathscr{D} M+E \tag{5}
\end{equation*}
$$

with $M: J^{2 r-1} Y \rightarrow V^{*} J^{r-1} Y \otimes \wedge^{n-1} T^{*} X$ and $E: J^{2 r} Y \rightarrow V^{*} Y \otimes \wedge^{n} T^{*} X$ (the injection $V^{*} Y \rightarrow V^{*} J^{r} Y$ being tacitly used here).

Write $M=\sum_{\alpha \mid \leqslant r \cdots 1} b_{p}^{\alpha i} \mathrm{~d} y_{\alpha}^{p} \otimes \omega_{i}$. Similarly to (3), we set $B_{p}^{j_{1} \cdots j_{k} i}=\frac{\alpha!}{k!} b_{p}^{\alpha i}$, $\alpha=j_{1}+\ldots+j_{k}$, so that $B ' s$ are symmetric in j_{1}, \ldots, j_{k}, not in i. Then

$$
\begin{equation*}
M=\left(B_{p}^{i} \mathrm{~d} y^{p}+\ldots+B_{p}^{j_{1} \ldots j_{r-1} i} \mathrm{~d}_{j_{1} \ldots j_{r-1}}^{p}\right) \otimes \omega_{i} \tag{6}
\end{equation*}
$$

Decomposition (5) leads to the following equations

$$
\begin{align*}
L_{p}^{j_{1} \cdots j_{r}} & =B_{p}^{\left(j_{1} \cdots j_{r}\right)} \\
& \vdots \tag{7}\\
L_{p}^{j_{1} \cdots j_{k}} & =D_{i} B_{p}^{j_{1} \cdots j_{k} i}+B_{p}^{\left(j_{1} \cdots j_{k}\right)} \\
& \vdots \\
L_{p} & =D_{i} B_{p}^{i}+\mathrm{e}_{p}
\end{align*}
$$

with $E=\mathrm{e}_{p} \mathrm{~d} y^{p} \otimes \omega$.
Evaluating e_{p} by a backward procedure, we find for any $B^{\prime} s$

$$
\begin{equation*}
e_{p}=\sum_{|\alpha| \leqslant r}(-1)^{|\alpha|} D_{a} \partial_{p}^{\alpha} L \tag{8}
\end{equation*}
$$

so that the Euler morphism E is uniquely determined. On the other hand, M cannot be unique in general: if we take any $C: J^{2 r-2} Y \rightarrow V^{*} J^{r-2} Y \otimes \wedge^{n-2} T^{*} X$, then $M+\mathscr{D} C$ also satisfies (5) by virtue of $\mathscr{D} \mathscr{D} C=0$. In [9]. we proved the global existence of such a morphism M and we also deduced a converse assertion: if M and \bar{M} are two morphisms satisfying (5), then there exists a morphism $C: J^{2 r-2} Y \rightarrow V^{*} J^{r-2} Y \otimes \wedge^{n}{ }^{2} T^{*} X$ such that $\bar{M}=M+\mathscr{D} C$. In particular, M is unique for $r=1$ and any n or $n=1$ and any r.

Define a vector bundle K_{r-1}^{s} over $J^{r-1} Y$ by an exact sequence

$$
\begin{equation*}
0 \rightarrow K_{r-1}^{s} \rightarrow V J^{r-1} Y \xrightarrow{V \pi_{r-1}^{s}}\left(\pi_{r-1}^{s}\right)^{!} V^{*} J^{s} Y \rightarrow 0 \tag{9}
\end{equation*}
$$

where $\left(\pi_{r-1}^{s}\right)^{\prime}$ denotes the pullback over $J^{r-1} Y$. For $s=r-2$, the fibers of K_{r-1}^{r-2} are $V Y \otimes S^{r-1} T^{*} X$. If we compose the dual map $V^{*} J^{r-1} Y \rightarrow K_{r}^{r-2_{1}^{*}}$ with M. we obtain $\tilde{M}: J^{2 r}{ }^{1} Y \rightarrow V^{*} Y \otimes S^{r}{ }^{1} T X \otimes \wedge^{n-1} T^{*} X$ and we can require (id $\otimes \perp$) $0 \widetilde{M}: J^{2 r-1} Y \rightarrow V^{*} Y \otimes S^{r-2} T X \otimes \Lambda^{n-2} T^{*} X$ to vanish. The coordinate
meaniner of this condition is $B_{p}^{j_{1} \cdots j_{2}} 2^{i}=B_{i}^{j_{1}} h_{2}{ }^{i /}$ and such a $1 /$ will be sald 1 , be quasisymmetric. lor $r-2$ (7) implies that there is a untuce quasisymmetric $1 /$ satisfying $\delta \lambda=\mathscr{Z} . U+E$. Its coordinate expression is
(10)

$$
\left|\left(L_{p}^{\prime} \quad D_{j} L_{p}^{j i}\right) \mathrm{d} y^{\prime \prime}+I_{p}^{j i} \mathrm{~d} y_{j}^{\prime}\right| \approx \omega_{i}
$$

However, one camot continue in such a procedure. For r. \therefore we deduced las direet evaluation that the condition $B_{p}^{i j}=B_{p}^{j i}$ depends on the coordinate sstem (an obstruction beine formed by the second partial derivatives of the transformat tion on the base manifold) , |10|. p. 207. |0|. p. 473.

Hence a natural problem is how to determine a mique $/ /$ by means of an additional structure. We shall show that it sufficies to dde a linear symmetric connection J on l . which is more economical than the pars of connections used in [4] and [1]. To clarify the basic idea of our construction. We first consi-
 a vetor bunde over d . In other words, S is a linear morphism such that pos- id. where $p: T^{r}{ }^{1 *} X \rightarrow T^{*} X$ is the canonical projection. Then we shall show that every Γ determines a splitting $\Gamma_{r}, \quad: T^{*} \lambda \rightarrow T^{r}{ }^{1 *} \neq \lambda$.

Given any vector bundle $E-X$. we define E_{s}^{0} by an exact sequence.

$$
\begin{equation*}
0 \rightarrow E_{s}^{0} \rightarrow J^{s} E \rightarrow E \rightarrow 0 \tag{111}
\end{equation*}
$$

A canonical map $x: J^{s}{ }^{1} E \in T^{s} * X \rightarrow E_{s}^{0}$ can be constructed as follows, $|11|$. [7]. Having $H=j_{x}^{5}{ }^{1} \sigma \in J^{s-1} E$ and $F=j_{x}^{s} f \in T^{s *} X$. $f o$ is a section of L. Obviously $f(x)=0$ implies that $j_{x}^{s}\left(f(0)\right.$ depends on H and F only and $j_{x}^{s}(f \sigma) \equiv E_{8}^{\prime \prime}$. This gives a bilinear map from the Whitney sum $J^{s}{ }^{1} E \because T^{s *} A$ into E_{s}^{0} inducing x.

(12) $\quad g_{a}^{p}=\sum_{\beta+\gamma=a} \frac{\alpha!}{\beta!\gamma!} h_{\beta}^{p} a_{\gamma}$
where the sum is taken over all multiindicial decompositions of α. If we add a splitting $S: T^{*} X \rightarrow T^{s *} X, a_{\gamma}=S_{\gamma}^{i} a_{i} . S_{j}^{i}=\delta_{j}^{i}$, we obtain a map $\chi o(\mathrm{id} \otimes S): I^{s-1} E \sigma$ $T^{*} X \rightarrow E_{s}^{0}$ with the following coordinate expression

$$
\begin{equation*}
g_{a}^{p}=\sum_{\gamma+\gamma=\alpha} \frac{\alpha!}{\beta!\gamma!} S_{\gamma}^{i} h_{\beta}^{p} a_{i} \tag{13}
\end{equation*}
$$

Given a fibred manifold Y, one analogously introduces a map

$$
x:\left(\begin{array}{ll}
\pi_{s}^{s} & 1 \tag{14}
\end{array}\right)^{\prime} V J^{s-1} Y \otimes T^{s * X} \rightarrow V J^{s} Y
$$

by means of the canonical identification $V J^{s} Y \approx J^{s} V Y$, [5]. Every $G \in V J^{s} Y$ corresponds to an s-jet $j_{x}^{s} \sigma$, where σ is a local section of $V Y \rightarrow X$. Then $j_{x}^{s}(f \sigma)$ is identified with an element of K_{s}^{0}. This induces x by bilinearity. If we add a splitting $S: T^{*} X \rightarrow T^{s *} X$, then (13) implies that the coordinate expression of $\widetilde{S}=x o(\mathrm{id} \otimes S):\left(\pi_{s}^{s-1}\right)!V J^{s-1} Y \otimes T^{*} X \rightarrow V J^{s} Y$ is

$$
\begin{equation*}
\mathrm{d} y_{\alpha}^{p}=\sum_{\beta+\gamma=a} \frac{\alpha!}{\beta!\gamma!} S_{\gamma}^{i} \mathrm{~d} y_{\beta}^{p} \otimes \partial_{i} \tag{15}
\end{equation*}
$$

Every linear symmetric connection Γ on X determines a splitting $\Gamma_{s}: T^{*} X \rightarrow$ $T^{s *} X$ as follows. Every $a \in T_{x}^{*} X$ can be interpreted as a linear map $\lambda(a): T_{x} X \rightarrow \mathbf{R}$. Consider the exponential map exp of Γ restricted to a diffeomorphism from a neighbourhood $0 \in U \subset T_{x} M$ into a neighbourhood $x \in V \subset X$. Then $\lambda(a) \circ$ $\exp ^{-1}: V \rightarrow \mathbf{R}$ and we define $\Gamma_{s}(a)=j_{x}^{s}\left(\lambda(a) \circ \exp ^{-1}\right)$.

Given a splitting $S: T^{*} X \rightarrow T^{r-1 *} X$, a morphism $M: J^{2 r-1} Y \rightarrow V^{*} J^{r-1} Y \otimes$ $\Lambda^{n-1} T^{*} X$ will be called S-quasisymmetric, if the resulting map in the following diagram vanishes

In particular, if Γ is an integrable connection and x^{i} is an affine local coordinate system of Γ, then Γ_{r-1} is determined by $S_{\beta}^{i}=0,|\beta| \geqslant 2$. Then one finds easily that M is Γ_{r-1}-quasisymmetric if and only if

$$
\begin{equation*}
B_{p}^{j_{1} \cdots j_{s} j i}=B_{p}^{j_{1} \cdots j_{s} i j} \quad \text { for all } s \tag{17}
\end{equation*}
$$

This is a justification of our terminology.
PROPOSITION 1. For every splitting $S: T^{*} X \rightarrow T^{r-1} * X$ there exists a unique S-quastsymmetric morphism $M_{S}: J^{2 r-1} Y \rightarrow V^{*} J^{r-1} Y \otimes \wedge^{n-1} T \quad X$ satisfying $\delta \lambda=\mathscr{D} M_{S}+E$.

Proof. Take a local coordinate system x^{i} on X and consider first the local splitting determined by the integrable comnection corresponding to x^{i}. Then the
symmetries (17) imply that all B 's in (7) are uniquely determined and
1181

$$
\begin{aligned}
B_{p}^{j_{1} \cdots j_{k} i} & =L_{p}^{j_{1} \cdots j_{h} i}-D_{1} L^{\left(j_{1} \cdots j_{k} i\right.}+\ldots \\
& \left.+(-1)^{s}\right)_{1} \ldots l_{p}^{1} l_{s} j_{1} j_{k}
\end{aligned}
$$

with $s+h+1=r$. For an arbitrary splitting S. we deduce by $(15) B_{p}^{j_{1} / h_{h} / i}$. $B_{p}^{j_{1} i_{k} i l}+$ certain linear combinations of the products of $B^{\prime} s$ with more superseripts with some S s. Then (7) gives
(19)

$$
B_{p}^{j_{1} \cdots j_{k}}=I_{p}^{j_{1} \cdots j_{k}}-D_{i} B_{p}^{j_{1} \cdots j_{k}{ }^{i}}+C_{p}^{j_{1} \cdots j_{h}}
$$

where $\left({ }_{p}^{j_{1} \cdots i_{k}}\right.$ is a certain linear combination with rational cocfifients of the products $B_{p}^{i_{1} \ldots i_{k}} 2^{i}{ }^{1} \ldots s^{i} S_{i_{1}}^{j} \ldots i_{s}$ (no summation), $s \geqslant 2$. This determines 1_{s}.

The morphism H_{S} will be called the Poincare-Cartan morphism of λ determin ed by S. For $S=\left[\right.$, we say that $M_{r_{r}}=H_{1}$ is determined hy I. Since the global existence of a linear symmetric connection on every X is a well-known fact. Proposition 1 gives another proof of the global existence of the Poincare Cartan morphisms.

For $r=2$ one can take the identity map of $T^{*} \lambda$ only, which gives (10) For $r=3$. any splitting $T^{*} X \rightarrow T^{2} * X$ coincides with a linear symmetric conncetion I on X. In general. local coordinates x^{i} or X induce the additional coordinates $f_{i_{1} \ldots i_{h}}=\partial_{i_{1}} \ldots \dot{\partial}_{i_{k}} f$ on $T^{s * \lambda} \hat{\lambda}, k=1 \ldots$. . If $f_{i j}=\Gamma_{i j}^{h} f_{h}$ are the equations. of Γ. then the coefficients of M_{Γ} are

$$
\begin{align*}
& \left.B_{p}^{j k \backslash}=L_{p}^{j k} \cdot B_{p}^{j i}=L_{p}^{j i}-i\right)_{k} L_{p}^{j i k}+L_{p}^{k \cdot 1 j} \Gamma_{k:}{ }^{\prime!} . \tag{20}\\
& B_{p}^{i}=L_{p}^{i}-D_{j} L_{p}^{j i}+D_{j k} L_{p}^{j k i}-D_{j} L_{p}^{k \times j \Gamma_{k}}{ }^{i!} .
\end{align*}
$$

We now describe an algorithm for finding the equations of the splitting l° : $T^{*} \mathrm{X} \rightarrow T^{s *} \mathrm{X}$ determined by I^{\prime} in an arbitrary local coordinate system on X (in the normal coordinate system of I° at $x \in A$, the equations of Γ_{a} at x are $f_{i j}=0 \ldots i_{i_{1} \ldots i_{s}}=0$ by definition). This is based on the fact that the second and higher order derivatives of λ (a) oexp ${ }^{\text {1 }}$ along each geodesics passing through x vanish. We find the explicit formulae for Γ_{2} and Γ_{3}. The equations of geodesich are
(21)

$$
\frac{\mathrm{d}^{2} x^{i}}{\mathrm{~d} t^{2}}+\Gamma_{j k}^{i} \frac{\mathrm{~d} x^{j}}{\mathrm{~d} t} \frac{\mathrm{~d} x^{k}}{\mathrm{~d} t}=0
$$

and the second derivative of a function f along a curve $x^{i}(f)$ is
(22)

$$
\frac{\partial^{2} f}{\partial x^{i} \partial x^{j}} \frac{\mathrm{~d} x^{i}}{\mathrm{~d} t} \frac{\mathrm{~d} x^{j}}{\mathrm{~d} t}+\frac{\partial f}{\partial x^{i}} \frac{\mathrm{~d}^{2} x^{i}}{\mathrm{~d} t^{2}}
$$

Hence $f_{i j}=\Gamma_{i j}^{k} f_{k}$. In the third order we have to evaluate $\frac{\mathrm{d}^{3} x^{i}}{\mathrm{~d} t^{3}}$ from (21) and differentiate once more (22). Then our condition gives

$$
\begin{equation*}
f_{i j k}=\left[\partial_{(k} \Gamma_{i j)}^{\ell}+\Gamma_{m(i}^{\ell} \Gamma_{j k)}^{m}\right] f_{\ell} . \tag{23}
\end{equation*}
$$

In this way, one can proceed step by step on.

2. REGULAR LAGRANGIANS

Our definition of a regular r-th order Lagrangian is motivated by Proposition 2 below and our requirements are stronger than in [2]. Our approach is inspired by Shadwick, [12], but we use a direct geometric construction applied to the Lagrangian itself (we remark that the results mentioned in §l imply that Shadwick's momenta are not geometrically well defined for $r>2$ and $n>1$).

If we restrict $\delta \lambda$ to K_{r}^{r-1}, we obtain a linear map $\Lambda(u): V Y \otimes S^{r} T^{*} X \rightarrow \wedge^{n} T^{*} X$, or an element $\Lambda(u) \in V^{*} Y \otimes S^{r} T X \otimes \wedge^{n} T^{*} X$, for every $u \in J^{r} Y$. The pullback $L_{r} Y=\left(\pi_{r-1}^{0}\right)^{!} V^{*} Y \otimes S^{r} T X \otimes \wedge^{n} \cdot T^{*} X$ over $J^{r-1} Y$ will be called the r-th Legendre bundle of Y and $\Lambda: J^{r} Y \rightarrow L_{r} Y$ will be called the Legendre transformation of λ (the first order case was studied in [8]). If we introduce fibre coordinates on $L_{r} Y$ by the decomposition $s_{p}^{j_{1} \ldots j_{r}} \mathrm{~d}_{1}, p \otimes\left(\frac{\partial}{\partial x^{j_{1}}} \ldots \circ \frac{\partial}{\partial x^{j_{r}}}\right) \otimes \omega$, then the coordinate expression of the Legendre transformation is $x^{i}=x^{i}, y_{\alpha}^{p}=y_{\alpha}^{p},|\alpha| \leqslant r-1$ and $s_{p}^{j_{1} \cdots j_{r}}=L_{p}^{j_{1} \cdots j_{r}}$. The vertical differential of Λ (over $J^{r-1} Y$) $\delta \Lambda: K_{r}^{r-1} \rightarrow$ $L_{r} Y$ can be viewed as a map $\delta \Lambda: J^{r} Y \rightarrow V^{*} Y \otimes S^{r} T X \otimes V^{*} Y \otimes S^{r} T X \otimes \Lambda^{n} T^{*} X$. For every $1 \leqslant k \leqslant r$. consider the canonical map

$$
\begin{equation*}
s_{k}: S^{r} T X \otimes S^{r} T X \rightarrow\left(S^{2 r-k} T X\right) \otimes S^{k} T X \tag{24}
\end{equation*}
$$

Then the induced map $\delta_{k} \Lambda=\left(\mathrm{id} \otimes s_{k}\right) \circ \delta \Lambda$ can be interpreted as

$$
\begin{equation*}
\delta_{k} \Lambda: J^{r} Y \rightarrow \operatorname{Hom}\left(V Y \otimes S^{k} T^{*} X \otimes \wedge^{n} T X, V^{*} Y \otimes S^{2 r-k} T X\right) \tag{25}
\end{equation*}
$$

DEFINITION. A Lagrangian λ will be called k-regular, if the linear map $\left(\delta_{k} \Lambda\right)(u): V Y \otimes S^{k} T^{*} X \otimes \wedge^{n} T X \rightarrow V^{*} Y \otimes S^{2 r-k} T X$ is a monomorphism for every $u \in J^{r} Y$. A Lagrangian is said to be regular if it is k-regular for every $1 \leqslant$ $k \leqslant r$.

For any $\alpha=i_{1}+\ldots+i_{r}$, we set
(20) $\quad L_{q p}^{j_{1} i_{r} j_{1} j_{r}}=\frac{a!}{r!} j_{q}^{a} L_{p}^{j_{1} \cdots j_{r}}$.
 resularity of λ is equivalent to the following condition. If
(27)

$$
L_{q b}^{i_{1} \ldots i_{,} j_{1} \ldots j_{r}}=i_{1}, i_{r} j_{1}, i_{h}{ }^{W} i_{k}-1 \ldots j_{r}=0
$$

for every $\left.=i_{1} \ldots i_{r} j_{1} j_{k} \in I^{*}\right\rangle \sigma S^{2 r} T X$, then $w_{j_{k+1}, j_{i}}^{p}=0$ (learly. λ is r regular if and only if λ is a local diffeomorphism.

Let $\left.\psi: T J^{r}\right\} \rightarrow \mid J^{r}{ }^{1} Y$ be the structure form of $\left.J^{r}\right\} . \psi=\frac{v_{r}, ~ w i l l}{\prime \prime} y^{\prime \prime}$ $\omega_{0}^{\prime \prime}=d_{a}^{p}-r_{0}^{p} \cdot d_{i}^{i},[3]$. [5]. For any splitting S, we define an exterior n. form $\psi \pi M_{S}$ on $J^{2 r}{ }^{2}$ by natural combination of the contraction with respect to $\| J^{r}{ }^{1} Y$ and alternation, $\psi \pi M_{S}=\stackrel{\text { U }}{ } h_{p^{a}}^{i} \omega_{a}^{p} \wedge \omega_{i} \cdot|6|$. If we interpret λ as an exterior n-form on $J^{r} Y$, then $\theta_{S}=\lambda+\psi \pi, U_{S}$ is an exterior n-form on $J^{2 r-1} Y$, which will be called the Poincare-Cartan form of λ determined by S (or by Γ in the case $S=\Gamma_{r}{ }_{1}$).

In general. a section $u: X \rightarrow J^{s} Y$ is said to be k-holonomic. $k \leqslant s$. if $\pi_{s}^{k} u==$ $j^{k}\left(\pi_{s}^{0} t\right)$.

PROPOSITION 2. Let λ be a regular Lagrangian and S an spliting. If a section $\|: X \rightarrow J^{2 r+1} Y$ satisfies

$$
\begin{equation*}
\left.u^{*}(\zeta\lrcorner \mathrm{d} \theta_{S}\right)=0 \tag{28}
\end{equation*}
$$

for erery $\pi_{2 r-1}^{r}{ }^{1}$-vertical vector field ζ on $J^{2 r}{ }^{1} Y^{\prime}$, then u is r-holonomic.
Proof. By (18) and (19). every $B_{p}^{I_{1} \cdots j_{k} i}$ is a affine map from the affine bundle $J^{r+s} Y \rightarrow J^{r+s-1} Y$ into reals, $k+1+s=r$, the linear part of which is

$$
\begin{equation*}
(-1)^{s} L_{q \rho}^{i_{1} \ldots i_{r} l_{1} \ldots v_{s} j_{1} \ldots j_{k} i_{1}, y_{i}^{q}, i_{r} y_{1} \ldots v_{s}} \tag{29}
\end{equation*}
$$

independently on S. (In other words, (29) is the highest order part of $B_{p}^{j_{1} \ldots j_{k} i_{i}}$). Let $u_{i_{1} \ldots i_{k}}^{p}$ be the coordinate functions of u. Set $u^{*}\left(\omega_{j_{1}, j_{h}}^{P} \wedge \omega_{i}\right)=l_{l_{1} \ldots i_{h}}^{\prime} \omega_{i}, s o$ that $\left\langle p_{j_{1} \ldots j_{k} i}^{p}=\partial_{i} u_{j_{1} \ldots j_{k}}^{p} \cdots u_{j_{1} \ldots j_{k}}^{p}\right.$. Consider first a $\pi_{2 r}^{2 r}$-vertical vector field ζ_{1}. Then the equation $u^{*}\left(\zeta_{1} \downharpoonleft \mathrm{~d} \theta_{S}\right)=0$ reads

Since λ is 1 -regular. (30) implies $L_{i}^{p}=0$, so that $\|$ is 1 -holonomic. Assume by induction that $\left.u^{*}\left(\zeta_{k}\right\lrcorner \mathrm{d} \theta_{S}\right)=0$ for every $\pi_{2 r}^{2 r}{\underset{1}{k}}^{1}$-vertical vector fiod ζ_{k} implies that u is k-holonomic, i.e. $u^{*} \omega_{a}^{p}=0$ for all $|\alpha| \leqslant k-1$. By (29), the condition $\left.u^{*}\left(\zeta_{k+1}\right\lrcorner \mathrm{d} \theta_{s}\right)=0$ for a $\pi_{2 r}^{2 r} 1_{1}^{k}$-vertical vector field $\zeta_{k, 1}=$
$r+s \in \ddot{L i}_{1} \leqslant 2 r-1 \zeta_{a}^{p} \partial_{p}^{\alpha}$ reads

$$
\begin{equation*}
L_{q p}^{i_{1} \ldots i_{r} \ell_{1} \ldots \ell_{s} i_{1} \ldots j_{k} i^{i} \zeta_{i_{1} \ldots i_{r} \ell_{1} \ldots \ell_{s}}^{q} U_{j_{1} \ldots j_{k} i}^{p}=0 ~ . ~} \tag{31}
\end{equation*}
$$

Since λ is $(k+1)$-regular, (31) implies $U_{\left(j_{1} \ldots j_{k} i\right)}^{p}=0$. We have $u_{j_{1} \ldots j_{k}}^{p}=\partial_{j_{1}} \ldots$ $\partial_{j_{k}} u^{p}$ by the induction hypothesis. Then $U p_{\left.j_{1} \ldots j_{k} i\right)}=0$ implies $u_{j_{1} \ldots j_{k} i}^{p}=\partial_{i} \partial_{j_{1}} \ldots$ $\partial_{j_{k}} u^{p}$. Hence u is $(k+1)$-holonomic. In the last step of this procedure we obtain that u is r-holonomic.
Q.E.D.

REMARK 1. For $n=1$ a stronger result holds: if λ is a regular Lagrangian with the (unique) Poincaré-Cartan form θ and $\left.u^{*}(\zeta\lrcorner \mathrm{d} \theta\right)=0$ for every $\pi_{2 r-1}^{0}$-vertical vector field ζ on $J^{2 r-1} Y$, then u is $(2 r-1)$-holonomic, [6].

3. A GEOMETRICAL FORM OF THE HIGHER ORDER HAMILTON FORMALISM

A section $s: X \rightarrow Y$ is said to be a critical section of λ if $\left(j^{2 r} s\right)^{*} E=0$. (In coordinates, $\left(j^{2 r} S\right)^{*} \mathrm{e}_{p}=0, p=1, \ldots, m$, are the Euler equations).

PROPOSITION 3. For any Lagrangian λ and any splitting S, if an r-holonomic section $u: X \rightarrow J^{2 r-1} Y$ satisfies $\left.u *(\zeta\lrcorner \mathrm{d} \theta_{S}\right)=0$ for every $\pi_{2 r-1}$-vertical vector field ζ on $J^{2 r-1} Y$, then $s=\pi_{2 r-1}^{0} u$ is a critical section of λ.

Proof. We have $\theta_{S}=\lambda+\sum_{|\alpha| \leqslant r-1} b_{p}^{\alpha i} \omega_{\alpha}^{p} \wedge \omega_{i}$, so that

$$
\begin{align*}
& \left.\zeta\lrcorner \mathrm{d} \theta_{S}=\zeta\right\lrcorner \mathrm{d} \lambda+ \tag{32}\\
& \left.\sum_{|\alpha| \leqslant r-1}\left[(\zeta\lrcorner \mathrm{d} b_{p}^{\alpha i}\right) \omega_{\alpha}^{p} \wedge \omega_{i}-\zeta_{\alpha}^{p} \mathrm{~d} b_{p}^{\alpha i} \wedge \omega_{i}-b_{p}^{\alpha i} \zeta_{\alpha+i}^{p} \omega\right] .
\end{align*}
$$

Since u is r-holonomic, the second term on the right-hand side vanishes on u. Hence $\left.u^{*}(\zeta\lrcorner \mathrm{d} \theta_{S}\right)=0$ is equivalent to

$$
\begin{equation*}
\left(\left(j^{r} s\right)^{*} L_{p}^{j_{1} \cdots j_{k}}\right) \omega=u^{*}\left(\mathrm{~d} B_{p}^{j_{1} \cdots j_{k} i} \wedge \omega_{i}\right)+\left(u^{*} B_{p}^{\left(j_{1} \cdots j_{k}\right)}\right) \omega \tag{33}
\end{equation*}
$$

$k=0, \ldots, r-1$. For $k=r, B_{p}^{j_{1} \cdots j_{r}}=L_{p}^{j_{1} \ldots j_{r}}$ are some functions on $J^{r} Y$, so that

$$
\begin{equation*}
u * B_{p}^{j_{1} \cdots j_{k+1}}=\left(j^{2 r k-1} s\right)^{*} B_{p}^{j_{1} \cdots j_{k+1}} \tag{34}
\end{equation*}
$$

for $k+1=r$. Assume by induction that (34) holds for some $k+1$ and we prove that (34) holds for k as well. Since $\mathrm{d}\left(\left(j^{2 r-k-1} s\right)^{*} B_{p}^{j_{1} \cdots j_{k+1}}\right)=\left(j^{2 r-1} s\right)^{*}$. $D B_{p}^{j_{1} \cdots j_{k}+1}$ by the definition of the formal exterior differential, we have $u^{*}\left(\mathrm{~d} B_{p}^{j_{1} \cdots j_{k} i} \wedge \omega_{i}\right)=\mathrm{d}\left(\left(j^{2 r-k-1} s\right)^{*} B_{p}^{j_{1} \cdots j_{k} i}\right) \wedge \omega_{i}=\left(j^{2 r-k} s\right)^{*} D B_{p}^{j_{1} \cdots j_{k} i} \wedge \omega_{i}$. But
 $B_{p}^{j_{1} i_{h}}$ differs from $B_{p}^{\left(j_{1} \ldots j_{h}\right)}$ by some linear combinations with coedicionts defined on l^{\prime} of $B^{\prime} ;$ with more superscripts and some their formal derivatives. But all these quantities are defined on $J^{2 r} k l^{1} y^{\prime}$ and their values on u comedic with their values on $j^{2 r \cdot k}{ }^{1} s$ by the induction hypothesis and by the definition of the formal derivative. Hence (34) holds for k superscipts as well. Thus. by induction. (34) is true for all $B^{\prime} S$. By (33) and (34), $w(5 . j d \theta s)=0$ is reduced to

$$
\begin{align*}
& \left(j^{r} s\right)^{*} L_{p}=\left(j^{2 r} s\right)^{*} D_{i} B_{p}^{i} \\
& \left(j^{r} s\right)^{*} L_{p}^{j_{1} \cdots j_{k}}=\left(j^{2 r} k_{s}\right)^{*} D_{i} B_{p}^{j_{1} \cdots j_{k} i}+\left(j^{2 r} k_{s}\right)^{*} B_{p}^{\left(j_{1} i_{k}\right)} \tag{35}
\end{align*}
$$

$k=1 \ldots r-1 . \quad$ Using $B_{p}^{j_{1} \cdots j_{r}}=L_{p}^{j_{1} \cdots j_{r}}$ and the backward elimination, we deduce $\left(j^{2 r} S\right)^{*} e_{p}=0$.

REMARK 2. Proposition 5 of [6] implies that every critical section 5 satisfies $\left.\left(j^{2 r-1} S\right)^{*}(\zeta\lrcorner \mathrm{d} \theta_{S}\right)=0$ for any splitting S and any $\pi_{2 r-1}$-vertical vector field ζ on $J^{2 r-1} Y$.

A geometrical version of the higher order Hamilton formalism can be now formulated as follows.

PROPOSITION 4. Let λ be a regular r-th order Lagrangian on $Y \rightarrow \lambda$ and $S: T^{*} \lambda^{*}$ $\rightarrow T^{r-1} * X$ be any splitting. If a section $u: X \rightarrow J^{2 r-1} Y$ satisfies $u^{*}\left(\zeta \ldots \mathrm{~d} \theta_{S}\right)=0$. then $s=\pi_{2 r-1}^{0}$ u is a critical section of λ.

Proof. Since λ is regular, u is r holonomic by Proposition 2. Then s is critical by Proposition 3.
Q.E.D

REFERENCES

[1] M. Ferraris, Fibred connections and global Poincare-Cartan forms in higher order calculus of variations, to appear in Proceedings of the conference on differential geometry and its applications, Nové Město na Moravě, September 5-9. 1983.
[2] M. Francaviglia. D. Krupka. The Hamilton formalism in higher order variational problems, Ann. Inst. Henri Poincaré, XXXVII (1982), 295-315
[3] P.L. García, The Poincaré-Cartan invariant in the calculus of variations. Instituto Nazionale di Alta Matematica, Symposia Math matica XIV. Roma 1974, 219-246.
14] P.L. GARCÍA, J. MUÑOZ, On the geometrical structure of higher order variational calculus. Proceedings of the IUTAM-ISIMM Symposium on Modern Developments in Analytical Mechanics, Torino, June 7-11, 1982, Tecnoprint. Bologna 1983, 127-147
15] H. Goldschmidt, S. Sternberg, The Hamilton formalism in the calculus of variations. Ann. Inst. Fourier (Grenoble), 23 (1973) 203 - 267.
[6] M. Horák. I. Kolár, On the higher order Poincaré-Cartan forms, Czechoslovak Math. J., 33 (108) (1983), 467-475.
[7] M. Horák, On the geometry of the higher order Lagrange and Hamilton formalisms in fibered manifolds (in Czech), PhD thesis, Brno 1982.
[8] I. KOLÁř, On the Hamilton formalism in fibered manifolds, Scripta Fac. Sci. Nat. UJEP Brunensis, Physica 5, 1975, 249 - 254.
[9] I. Koléř, Some geometric aspects of the higher order variational calculus, to appear in Proceedings of the conference on differential geometry and its applications, Nové Město na Moravě, September 5-9, 1983.
[10] D. Krupka, Lepagean forms in higher order variational theory, Proceedings of the IUTAM-ISIMM Symposium on Modern Developments in Analytical Mechanics, Torino, June 7-11, 1982, Tecnoprint, Bologna 1983, 197-238.
[11] M. Modugno, G. Stefani, Some results on jet spaces, Quaderni dell'Istituto di Matematica dell'Università di Lecce, Q. 17, 1978.
[12] W.F. Shadwick, The Hamiltonian formulation of regular \boldsymbol{r}-th order Lagrangian field theories, Letters in Mathematical Physics 6 (1982), 409 -416.
[13] A. Trautman, Invariance of Lagrangian systems, General Relativity, Papers in honour J.L. Synge, Clarendon Press, Oxford 1972, 85 - 99.

Manuscript received: May 24, 1984.

